Preconfigured neuronal firing sequences in human brain organoids

Nature Neuroscience. 2025:1-13. doi: 10.1038/s41593-025-02111-0

Neuronal firing sequences are thought to be the building blocks of information and broadcasting within the brain. Yet, it remains unclear when these sequences emerge during neurodevelopment. Here we demonstrate that structured firing sequences appear in spontaneous activity of human and murine brain organoids, both unguided and forebrain identity directed, as well as ex vivo neonatal murine cortical slices. We observed temporally rigid and flexible firing patterns in human and murine brain organoids and early postnatal murine somatosensory cortex, but not in dissociated primary cortical cultures. These results suggest that temporal sequences do not arise in an experience-dependent manner, but are rather constrained by a preconfigured architecture established during neurodevelopment. By demonstrating the developmental recapitulation of neural firing patterns, these findings highlight the potential of brain organoids as a model for neuronal circuit assembly.

Library Collection(s)