In Silico

1.
Thomas Hartung, Maurice Whelan, Weida Tong, Robert M. Califf. Is regulatory science ready for artificial intelligence?. npj Digital Medicine. 2025;8(1):1-5. doi:10.1038/s41746-025-01596-0
View Full Reference
1.
Alessandra Roncaglioni, Simona Kovarich, Kamel Mansouri, Igor V. Tetko. Advancing Human and Environmental Safety Science Using In Silico Methods. Chemical Research in Toxicology. 2025;38(8):1281-1282. doi:10.1021/acs.chemrestox.5c00293
View Full Reference
1.
Amit Gangwal, Antonio Lavecchia. Artificial intelligence in preclinical research: enhancing digital twins and organ-on-chip to reduce animal testing. Drug Discovery Today. 2025;30(5):104360. doi:10.1016/j.drudis.2025.104360
View Full Reference
1.
Danilo Bzdok, Andrew Thieme, Oleksiy Levkovskyy, Paul Wren, Thomas Ray, Siva Reddy. Data science opportunities of large language models for neuroscience and biomedicine. Neuron. 2024. doi:10.1016/j.neuron.2024.01.016
View Full Reference
1.
Madura KP Jayatunga, Margaret Ayers, Lotte Bruens, Dhruv Jayanth, Christoph Meier. How successful are AI-discovered drugs in clinical trials? A first analysis and emerging lessons. Drug Discovery Today. 2024;29(6):104009. doi:10.1016/j.drudis.2024.104009
View Full Reference
1.
Nicole Kleinstreuer, Thomas Hartung. Artificial intelligence (AI)-it’s the end of the tox as we know it (and I feel fine). Archives of Toxicology. 2024. doi:10.1007/s00204-023-03666-2
View Full Reference
1.
Alexandra Maertens, Thomas Luechtefeld, Jean Knight, Thomas Hartung. Alternative methods go green! Green toxicology as a sustainable approach for assessing chemical safety and designing safer chemicals. ALTEX. 2024;41(1):3-19. doi:10.14573/altex.2312291
View Full Reference
1.
Thomas Hartung. ToxAIcology - The evolving role of artificial intelligence in advancing toxicology and modernizing regulatory science. ALTEX. 2023;40(4):559-570. doi:10.14573/altex.2309191
View Full Reference
1.
Weihai Ying. Phenomic Studies on Diseases: Potential and Challenges. Phenomics. 2023;3(3):285-299. doi:10.1007/s43657-022-00089-4
View Full Reference
1.
Pauric Bannigan, Zeqing Bao, Riley J. Hickman, et al. Machine learning models to accelerate the design of polymeric long-acting injectables. Nature Communications. 2023;14(1):35. doi:10.1038/s41467-022-35343-w
View Full Reference