Studying the molecular mechanisms underlying the assembly of the human nervous system remains a significant challenge. The ability to generate neural cells from pluripotent stem cells, combined with advanced genome-editing techniques, provides unprecedented opportunities to uncover the biology of human neurodevelopment and disease. Organoids and assembloids enable the in vitro modeling of previously inaccessible developmental processes, such as the specification and migration of human neurons, including the integration of cortical interneurons from the ventral into the dorsal forebrain. Here, we present a detailed protocol that combines pooled CRISPR–Cas9 screening with neural organoid and assembloid models and illustrate how it can be applied to map hundreds of disease genes onto cellular pathways and specific aspects of human neural development. Our protocol outlines key steps, from planning and optimizing genetic perturbations to designing readouts for neuronal generation and migration, conducting the screening and validating candidate genes. The screening experiments take ~3 months to complete and require expertise in stem cell culture and neural differentiation, genetic engineering of human induced pluripotent stem cell lines, fluorescence-activated cell sorting and next-generation sequencing and analyses. The integration of genetic screening and human cellular models constitutes a powerful platform for investigating the mechanisms of human brain development and disease, paving the way for the discovery of novel therapeutics.
Nature Protocols.
2025:1-21. doi: 10.1038/s41596-025-01299-6
Library Collection(s)