TY - JOUR KW - CD8⁺ T cells KW - HLA‐B*57:01 KW - immune‐mediated toxicity KW - liver organoids KW - organoid‐immune co‐culture platforms AU - Fadoua El Abdellaoui Soussi AU - Michael Brusilovsky AU - Emma Buck AU - W. Clark Bacon AU - Sina Dadgar AU - Aaron Fullerton AU - Victoria Marsh Durban AU - Riccardo Barrile AU - Michael A. Helmrath AU - Takanori Takebe AU - Adrian Roth AU - Magdalena Kasendra AB - Modeling adaptive immune responses in induced pluripotent stem cell (iPSC)-derived liver systems remains a critical barrier for studying immune-mediated hepatic diseases, including idiosyncratic drug-induced liver injury (iDILI). Conventional hepatotoxicity models lack the components required to capture patient-specific, T cell-mediated injury. Here, a scalable and matrix-free human liver organoid (HLO) microarray platform is presented that enables controlled co-culture of Human Leukocyte Antigen (HLA)-genotyped, iPSC-derived HLOs with autologous CD8⁺ T cells. This immune-competent system supports antigen-specific T cell activation and reproduces cytotoxic effector responses in a genetically defined context. As a proof-of-concept, the platform models clinically relevant iDILI caused by flucloxacillin in HLA-B*57:01 carriers, recapitulating CD8⁺ T cell proliferation, hepatocyte apoptosis, and variability in immune responses across donors. The system captures hallmark features of adaptive immune-mediated hepatotoxicity, including secretion of tumor necrosis factor-alpha and Granzyme B, and cytokeratin-18 release from injured hepatocytes. By linking genetic susceptibility with functional immune outcomes, this platform provides a modular and scalable approach for evaluating immune-mediated toxicities. The method offers broad utility for mechanistic studies of drug hypersensitivity, immune-related adverse events, and preclinical safety assessment in support of precision medicine. BT - Advanced Science (Weinheim, Baden-Wurttemberg, Germany) DA - 2025-09-26 DO - 10.1002/advs.202508584 LA - eng N2 - Modeling adaptive immune responses in induced pluripotent stem cell (iPSC)-derived liver systems remains a critical barrier for studying immune-mediated hepatic diseases, including idiosyncratic drug-induced liver injury (iDILI). Conventional hepatotoxicity models lack the components required to capture patient-specific, T cell-mediated injury. Here, a scalable and matrix-free human liver organoid (HLO) microarray platform is presented that enables controlled co-culture of Human Leukocyte Antigen (HLA)-genotyped, iPSC-derived HLOs with autologous CD8⁺ T cells. This immune-competent system supports antigen-specific T cell activation and reproduces cytotoxic effector responses in a genetically defined context. As a proof-of-concept, the platform models clinically relevant iDILI caused by flucloxacillin in HLA-B*57:01 carriers, recapitulating CD8⁺ T cell proliferation, hepatocyte apoptosis, and variability in immune responses across donors. The system captures hallmark features of adaptive immune-mediated hepatotoxicity, including secretion of tumor necrosis factor-alpha and Granzyme B, and cytokeratin-18 release from injured hepatocytes. By linking genetic susceptibility with functional immune outcomes, this platform provides a modular and scalable approach for evaluating immune-mediated toxicities. The method offers broad utility for mechanistic studies of drug hypersensitivity, immune-related adverse events, and preclinical safety assessment in support of precision medicine. PY - 2025 EP - e08584 T2 - Advanced Science (Weinheim, Baden-Wurttemberg, Germany) TI - Autologous Organoid-T Cell Co-Culture Platform for Modeling of Immune-Mediated Drug-Induced Liver Injury SN - 2198-3844 ER -